Simulating Simple Roller Coaster Physics for Animation and Interactive Applets

Parameterized paths in space: $\vec{r}(s)$
. Continuous

- Continuous
- $2^{\text {nd }}$ order differentiable

Dynamics 2.0: Coasting

Application of Lagrangian Dynamics(3): $L=T-V$

$$
\begin{aligned}
& T=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime}\right) \dot{s}^{2} \\
& V=m g y=m g \vec{r} \cdot \hat{\jmath}
\end{aligned}
$$

From Lagrange's Equation $\frac{d}{d t} \frac{\partial L}{\partial \dot{s}}-\frac{\partial L}{\partial s}=0$

$$
m\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime}\right) \ddot{s}+m\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime \prime}\right) \dot{s}^{2}+m g y^{\prime}=0
$$

$$
\ddot{s}=-\frac{\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime \prime}\right) \dot{s}^{2}+g y^{\prime}}{\vec{r}^{\prime} \cdot \vec{r}^{\prime}}
$$

Integrate:

$$
\begin{aligned}
& s(t+d t)=s(t)+\dot{s}(t) d t \\
& \dot{s}(t+d t)=\dot{s}(t)+\ddot{s}(t) d t
\end{aligned}
$$

Dynamics 2.1: Coasting with Friction

 More Lagrangian Dynamics!Rayleigh's dissipation function $\Phi=\frac{1}{2} b v^{2}$
Modified Lagrange's Equation $\frac{d}{d t} \frac{\partial L}{\partial \dot{s}}-\frac{\partial L}{\partial s}+\frac{\partial \Phi}{\partial \dot{s}}=0$

$$
m\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime}\right) \ddot{s}+m\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime \prime}\right) \dot{s}^{2}+m g y^{\prime}+b\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime}\right) \dot{s}=0
$$

$$
\ddot{s}=-\frac{\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime}\right)\left(\dot{s}^{2}+g y^{\prime}\right.}{\vec{r}^{\prime} \cdot \vec{r}^{\prime}}-\frac{b}{m} \dot{s}
$$

Fine-Tune Energy conservation:

$$
\begin{aligned}
& d W_{f}=\vec{F} \cdot d \vec{r}=-b \vec{v} \cdot \vec{v} d t=-b\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime}\right) \dot{s}^{2} \\
& E \rightarrow E+d W_{f}
\end{aligned}
$$

Adjust speed each iteration to scale KE to "fix" Energy

Dynamics 3: Bouncing

Consequences of "Failure to Loop"
Freefall between "bounces" from track
Collision Dynamics: Impulse approximation for interacting bodies a la Video Game Physics.(4)

- Conservation of momentum, angular momentum
- Coefficient of restitution e
- "Massive" body $1\left(m_{1}^{-1}=0, I_{1}^{-1}=0\right)$ for track

Impulse:

$$
\begin{aligned}
& \left.\vec{J}_{r}=-\frac{(1+e) \vec{v} \cdot \hat{n}}{m_{2}^{-1}+\left(I_{2}-1\right.}\left(\vec{r}_{2} \times \hat{n}\right) \times \vec{r}_{2}\right) \cdot \hat{n} \\
& \Delta \vec{v}_{2}=\frac{\vec{J}_{r}}{m_{2}} \hat{n} \quad \Delta \omega_{2}=\vec{J}_{r} I_{2}^{-1}\left(\vec{r}_{2} \times \hat{n}\right)
\end{aligned}
$$

Implemented in 2-D

Implementation

Applet: Implemented Using Easy Java Simulations from the Open Source Physics Project(5)

Interactive explorations of topics in energy conservation, reaction forces, friction and g-forces.

Animation: Frames created with POV-Ray 3-D ray tracing program.(6)

Coasting and Failing to Coast examples

OL

First person views and non circular loop

With additional physical data (radius, mass, speed, initial height, etc) students tasked with determining:

- Minimum speed to power through loop at constant speed

Maximum power required during successful loop at constant speed
G-forces, reaction forces
Minimum height to coast through circular loop

Some of this project is from Animations for Physics and Astronomy at Penn State Schuylkill. (7)
(1) Roller Coaster Model (Java applet)
hitp://www.opensourcephysics.org/tems/detail.cfm?ID=8228
(2) Roller Coaster Physics Animation htp://wwi.c.youtube.con

See e.g. Goldstein Herbert (1980) Classical Mechanics.
(3) See, e.g. Goldstevint Herbert (1980) Classical Mechanics.
(4) Vella, Colin. Gravitas: An extensible ehtysics engine framework using object-oriented and design pattern-driven software architecture principles (Masters Thesis), Departmen of Communications and Computer Engineering, University of Malta, 2008 .
5) http://www.opensourcephysics. org
(5) htpp://www..poponsay.org
(7) htpo//phys23p.spsu
(7) http://physs23p.Sl.psuu.edu/phys anim/Phys anim.htm

