Ranking Tasks with the WebWork Quiz System
 Michael R Gallis (mrg3@psu.edu)

Abstract

Ranking Tasks are a type of question which encourages a different mode of thinking than students employ for standard quiz problems. This presentation describes some preliminary work on implementing Ranking Tasks on quizzes in which the students receive randomized data but identically formatted questions. The unique requirements of Ranking Tasks Web Questions with regards to the randomization of quiz data will be discussed. Example Ranking task questions will be shown, as well as anecdotal assessment of their impact. The computer algorithm for answer assessment will also be presented.

Background

Ranking Tasks (RT)
A Ranking Task is an exercise that presents students with a set of variations, sometimes three or four but usually six to eight, on a basic physical situation. The variations differ in the values (numeric or symbolic) for the variables involved but task is to rank the variations on the basis of a specified physical quantity, Student must also explain the reasoning for their ranking scheme and rate their confidence in their ranking. These tasks require students to engage in a comparison reasoning process that they seldom do.
http://tycphysics.org/tipers.htm
WeBWork is a free Perl-based system for delivering individualized homework problems over the web. By providing students with immediate feedback as to the correctness of their answers, students are encouraged to make multiple attempts providing instructors with real-time statistics, lesson plans can be customized to better serve students.
http://webwork.maa.org/wiki/Main_Page

Randomized Ranking Task Problems

-Range of values for physical parameter(s)

- Coarse Graining of values: potential ambiguity for equal vs. not equal
- Students perceptions of a visual presentation of a problem
- Select values from a discrete set
- Computer roundoff
- Values are equal if they are within a set difference
-Representations of physical system for student ranking
- Numbers
- Graphs
- Distracters
-Ranking answers: $\mathrm{D}>\mathrm{E}=\mathrm{A}>\mathrm{C}=\mathrm{B}$

Some Nuts and Bolts

-This new type of questions takes a significant amount of code (in the

 background) tothird etc)

- Determine a numerical ranking from students (text) response
- Evaluate student ranking for correctness
- Numerical ranking from student response
- Trap and give hints for common mistakes

Thanks to Davide Cervone (Dept. of Mathematics, Union College) for writing the
http://webwork.maa.org/moodle/mod/forum/discuss.php?d=6129

The figure above shows 6 scenarios for the vectors V1 and V2. The magnitude of V1 is 2 units and the magnitude of V2 is 1.5 units.
Rank the six scenarios above by the corresponding magnitude of their vector sum.
The order is (from greatest to least):
Remember that ranking tasks results are expressed in terms of greater than and equals relations such as $C>D=B>A$ etc.

The figure above shows 6 scenarios for the vectors V 1 and V 2 . The magnitude of V1 is 3.5 units and the magnitude of V2 is 1.5 units.
The vector product (a.k.a. the cross product) is in part a measure of how perpendicular two vectors are. Rank the six scenarios above by the corresponding
magnitude of their cross products.
Remember that ranking tasks results are expressed in terms of greater than and equals relations such as $C>D=B>A$ etc.

The graph above represents the the height of a (frictionless) ski slope. The skier starts at A essentially at rest. For the positions indicated on the graph, rank them in decreasing order of Potential Energy. Take the heights as being on the nearest height grid line.
The order is (from greatest to least):
Remember that ranking tasks results are expressed in terms of greater than and equals relations such as $C>D=B>A$ etc.

Now rank the positions in decreasing order of Kinetic Energy. The order is (from greatest to least):

The order is (from greatest to least): \qquad

Electric Force

The figure above shows 6 scenarios two charges Q1 and Q2. Q1 has a charge of $-3 \mu \mathrm{C}$ and Q 2 has a charge of $-12 \mu \mathrm{C}$. These charges exert an electric force on a test charge $q(3 \mu \mathrm{C})$ located at the origin in each figure. The distance between the lines in the figure is 0.5 cm .
Rank the six scenarios above by magnitude of the electric force on the charge at the center of the figure
The order is (from greatest to least):
Remember that ranking tasks results are expressed in terms of greater than and equals ry drawing in (to scale) the $>A$ etc.
each figure. You may not need a charge on each figure. You may not need a calculator to do these comparisons.

The graph above represents the position of an object as a function of time. Over the intervals indicated rank the velocities over the intervals from greatest to least. The intervals indicated rank the veloci:
The order is (from greatest to least):
Remember that ranking tasks results are expressed in terms of greater than and equals relations such as $C>D=B>A$ etc.

How are These New Types of Questions?
Anecdotally,

- hear complaints
- The questions are harder, weird, different
-I don't see a disproportionate amount of questions/errors/time wasted etc from students

