Novel Laboratory Activities Emboldened by Open Source Physics

Michael R. Gallis Penn State Schuylkill Campus mrg3@psu.edu

Exploring lab activity variations with

- Tracker (video analysis and modelling)
- EJSS simulations (intro and concepts)
 - Custom, "on demand"

Iterative and never-ending explorations?

A snapshot of some of my EJSS projects, links to OSP/Compadre as appropriate https://phys23p.sl.psu.edu/~mrg3/interactives/EJSS_mrg/ Gravity with a twist, building on basketball toss with Tracker

Complications for a tossed ball?

Students' first guesses - drag

Soccer, Toy and Beach Balls

Curve fits with g = 2A

Curve fits to "top" of parabola

Low speed=low drag

 $g_{soccer} = 10.1 \ m/s^2$, modelling

 $g_{toy} = 8.38 \ m/s^2$, $g_{beach} = 6.40 \ m/s^2$

Buoyancy is the difference!

Graphs have hints of terminal velocity

Autotracking issues with underinflated beachball –more problem solving to do Unintended Spin: unwanted Magnus effect

A more complete beach ball model:

Gravity, Drag, Magnus, and Buoyancy

 $(m_{ball} + m_{air})\vec{a} = -(m_{ball} + m_{air})g\hat{z} + m_{air}g\hat{z} - \frac{1}{2}C_D\rho Av\vec{v} + \rho C_{spin}r_{ball}^3\vec{\omega}\times\vec{v}$

Adding to lab activities:

• Buoyancy:
$$g_{effective} = \frac{m_{ball}}{m_{ball} + m_{air}}g$$

- drag: $C_D = \frac{2m_{ball}g}{\rho A v_T^2}$
 - Terminal velocity and modelling
- Advanced: Tracker model full dynamics

•
$$m = m_{ball} + m_{air}, m_{air} = \rho \frac{4}{3} \pi r^3$$

• v_0 from video data

•
$$b = \frac{1}{2}\rho C_d A, C_d \approx 0.5$$

Start frame	73 👗 End fr	ame	460	0 🗍 Laun	icher 🔷 mass A	
Model: 💿 model A						
Parameters						
	Add	Сору	Cut	Paste]	
	Name				Expression	
m		.1	5			
ma		.0	134			
g		9.	31			
b		.0	2			
Initial Values						
	Name				Expression	
		0.	000			
(-0	0099150	83090684	895	
/		-0	0099150	830906733	349	
/X		0.)			
ſŷ		12				
Force Functions						
	Add	Сору	Cut	Paste		
Name			Expression			
ÍX.		0				
у			-m*g+ma*g-b*vy*abs(vy)			
ouble-click cell to ed	it. See Help for valid e	pressions.				

More beach ball:

Gravity, Drag, Magnus, and Buoyancy (oh, my!)

 $(m_{ball} + m_{air})\vec{a} = -(m_{ball} + m_{air})g\hat{z} + m_{air}g\hat{z} - \frac{1}{2}C_D\rho Av\vec{v} + \rho C_{spin} r_{ball}^3 \vec{\omega} \times \vec{v}$

Tracker Video analysis:

Side views, top views with drone

Curve ball, sinker, floater

Collisions!

Modelling In EJSS

compadre.org ID=15165

Beach Ball Physics

Rubber Band "Bungie Jumps"

Ideal Springs and beyond

Design contest:

Closest to ground without impact Closest to predicted first bounce

Tracker Video Analysis

Site measurements

Contests winner determination

Model validation

Elastic Hysteresis, Work and Energy

Measurement Methodology

Pasco force and motion sensors

Models and EJSS simulation

compadre.org

ID=14319 Hooke's Law Model ID=15165 Elastic Hysteresis

Visceral Conical Pendulum

Another Hands on Experience for Tracker Video

Measurement Methodology

Models and EJSS simulation and proof of concept

Early Stages

Student Participation (honors projects+) involving OSP 2009-2021

- Ticcard Bowser
- Cody Wiscount
- Ryan Chesakis (multiple)
- Justin Bastawrose
- John (Austin) Bayliff
- Christopher Hillman
- Carlos Rivera
- Shane Hall
- Benjamin Blake
- Quentin Moyer (multiple)
- Hunter Snyder
- Ryan Vidal
- Phillip Plasky

- Kelsey Shaffer
- Baylee Colburn
- Jesse Foran (multiple)
- Travis Barrow (multiple)
- Samuel Petersen
- Lauren Gober
- Stephen Byron
- Robin Bozeman
- John Cabarcas
- Zilong Wang
- Yuxuan Cai
- Dylan Miller
- Caleb Reedy
- Jonathan Stacey

Other EJSS/EJS Modelling

- Amusement Park Physics (lots)
- Quick Virtual Activities (Covid and remote learning)
- Game Physics Demo
- Physics of Medical X-Rays
- Math
 - Predator-Prey population dynamics
 - Differential Equations direction fields

https://phys23p.sl.psu.edu/~mrg3/interactives/EJSS_mrg/

OSP Personal Impact *

- New avenues of exploration for all students
- Students involved in developing new activities
- Indulge instructor's curiosity and creativity

*This talk does not even begin to address the impact of other authors' OSP simulations and activities on my curricula